The steady increase in energy consumptionacross North America is forcing consumers tocontend with high and variable energy costsand utilities into increase grid investments.Total energy production in the United Statesincreased for the sixth consecutive year in 2016,according to the U.S. Energy Information Association (EIA).During the same period, electricity generation from wind,solar, and other distributed energy resources (DERs) alsogrew, ushering in a “New EnergyW Landscape”. Thesedynamics have intensified the complexity of the gridoperations. Thus, utilities are looking closely at new, grid-edge hardware and software that solve for DERs, whilemeeting ratepayer expectations shifting towards a moreaffordable and sustainable energy mix and consumer options.
“The fastest and most efficient way to reach a high penetration of renewable with safe and reliable delivery of electricity is to implement microgrids”
This shift significantly impacts the distribution gridoperator who now must manage a more diversifiedenergy mix including “prosumers” who are contributingto the grid in new ways; from providing their owngeneration, to smart home technologies, to participating
in programs like demand response. In response,microgrid technologies have evolved to become one ofthe most effective tools for grid operators to solve thedynamics of the New Energy Landscape. Utility-scalemicrogrids are one of the most efficient ways for utilitiesto manage DER, incorporating support services such asenergy supply, frequency control, voltage stability, powerquality, and storm/outage management in one solution.Microgrids that incorporate advanced software enablebetter predictive control for added efficiency and cost-savings.
The fastest and most efficient way to reach a high penetration of renewable with safe and reliable delivery of electricity is to implement microgrids.
Advanced microgrids also now include intelligent optimization tools that enable grid operators to better
manage consumption and improve the efficiency of the energy mix responding to contemporary needs. This includes enabling smart city initiatives that take account of the influx of added consumption from urban communities and electric vehicles. Microgrids make urban environments both more livable and sustainable.
While most utility “smart grid” technologies focus on managing the traditional grid, microgrids are further enabling utilities and prosumers to add energy resiliency, efficiency, and economy to the mix. They enable resources to become more cost-effective and resilient, essentially opening the main switches during a grid disruption and using a DER to provide energy in an “islanded operating mode.
Enhancing Resiliency with Microgrids
A critical benefit of microgrids comes from their ability to enable the modernization of aging electrical infrastructure. Our country’s electrical infrastructure is graded a D+ by the American Society of Civil Engineers’ (ASCE) 2017 Report Card for America’s Infrastructure, demonstrated by recent and wide-spread power outages in New York and San Francisco that clearly illustrated how fragile it has become. Our electrical distribution system was built around remote generation, long distribution paths, and
passive loads and it was not designed to handle the coming levels of energy consumption or further complexity of DERs.
However, utilities can now leverage microgrids to upgrade their area grid without needing to “rip and replace” the existing infrastructure. Microgrids that incorporate energy storage increasingly complement the new distributed resources and doubles as further power systems back-up for added resiliency to get the grid back online faster after an outage.
These benefits have spurred a period of unprecedented growth in the microgrid market; in the U.S. the microgrid market is projected to reach more than $ 4.3 gigawatts by the end of the decade. This is thought to represent a five- year investment of $ 6.1 Billion. Gradually, these benefits will enable the states utility models to.
evolve toward a “grid of grids”—with microgrids as the centerpiece.
“Grid of grids” models are further supported by the convergence of information technology and operations technology (IT/OT). Merging IT and OT breaks down siloes and creates new opportunities for technologies, like advanced microgrids, to enhance the resiliency and efficiency of the grid, while offering utilities a more efficient way to operate and monetize DER. DERs are not only more efficient because the energy is produced closer to where it is consumed, but also with lower carbon emissions for a unit of energy produced, making the entire system more sustainable.
The ability for microgrids to be powered cleanly by renewable energy will significantly contribute to the
decarbonization of the current grid by substituting the load with locally produced clean power, without the need for ratepayers to subsidize those renewable sources. Additionally, microgrids enhance the design and condition of bulk power of the electrical distribution system creating enhanced reliability against severe weather and security against cyber attack. The opportunities for microgrids to provide value for many scenarios have allowed the technology to emerge as a key ingredient for enabling a
cleaner, more equitable energy future in our world.
Developing the Power System of the Future
We know the current way of distributing and managing centrally generated energy in the U.S. is unsustainable and the ultimate evolution of our grid is coming from flexible distributed power generation. The fastest and most efficient way to reach a high penetration of renewable with safe and reliable delivery of electricity is to implement microgrids. Several initiatives have already started in the
U.S. and abroad regarding the adoption of distributed energy. Through more advanced technology, including better control and more intelligent software solutions, we can help grid operators better
solve for the New Energy Landscape – meeting both the high penetration of distributed generation and the expectation of higher quality of service from .customers