Air Pollution Control Measure Technologies for Toxic Exhausts

Energy Business Review | Monday, October 11, 2021

Numerous techniques have been designed for complying with the emission standards. The technology can depend on the age of the plant, the type of coal. Various solutions can be applied in combination to achieve emission control targets.

FREMONT, CA: The toxic gases emitted from the exhausts of power plants play a significant role in global warming. In many cases, apart from SOx and NOx, thermal power plants also release a variety of other emissions like particulate matter (PM) and mercury.  With the move toward greener technologies by limiting the emissions, many compliance solutions have been provided. The answers are ESPs, Fabric filters, and mercury removal technologies are being planned for deployment by the thermal power generation industry.

Stay ahead of the industry with exclusive feature stories on the top companies, expert insights and the latest news delivered straight to your inbox. Subscribe today.

Electrostatic Precipitators:

Electrostatic precipitators (ESPs) are extensively used for controlling particulate emission in coal-based power generation plants. An ESP will electrically charge the ash particles from the flue gas stream to collect and recover the PM. The technology comprises of a series of parallel vertical plates containing electrodes to create an electric field through which flue gas passes and particles are separated and filtered.  A well-designed ESP is characterized by high PM collection efficiency, high dependability, and low flue gas pressure loss, resistance to moisture, temperature changes, and low maintenance. The ESP’s collection efficiency is very high at 99-99.99 percent for a range of 0.01-100 micrometer of particulate matter.

Nevertheless, it does not function as well for fly ash with high electrical resistivity value. Coal emits high resistivity fly ash when low sulfur fuels are burned. It is difficult to precipitate,  resulting in often limiting the collection efficiency of ESPs. In the same context, the conditioning of fly ash in flue gas is a well-established technique that is applied to restore the performance of ESPs in a coal-based power plant. There are concerns regarding the efficiency and operational performance of existing ESPs relating to PM limits being made much stricter than before. Feasible engineering solutions for ESP augmentation are available for compliance with the emission standards. For instance, increasing the collection area of the flue gas by the addition of pass in parallel and increasing the height of the existing ESPs by a maximum of 15 meters is also a valid option. Another solution is the utilization of a moving electrode electrostatic precipitator (MEEP). A MEEP consists of movable collecting plates and rotating brushes, which allow for a superior collection of highly resistive dust such as coal and sintered ash.

Fabric Filters:

Fabric filters (FFs) have been very effective as particulate collectors in which dust cake is gathered on the surface of bags and is removed by various techniques. The fabric provides a rough surface on which the dust collects. The dust is obtained based on the four mechanisms of inertial collection, interception, Brownian movement, and electrostatic forces. A combination of these mechanisms assists in the formation of the dust cake on the filter, which will maximize the resistance to gas flow. The cleaning of filters is carried out through mechanical shaker baghouse, reverse air or pulse jet baghouse. Baghouse filters are characterized to have a high collection efficiency, 99.9 to 99.99 percent over a broad range of particle sizes, and around 99.7 percent for PM 2.5. Flue gas conditioning is also implemented in fabric filters, enabling lower emissions. The conditioning agents that are commonly used are elemental sulfur, ammonia, and sulfur trioxide. Recently, FFs have experienced facelifts, and several steps have been taken to hike the number of filters and the depth to enlarge the screen without changing the dimensions of the space. New filter materials are being innovated using nanofibre technology and membrane-type fibers as against conventional materials such as glass, cellulose, and synthetic and polymer fibers. By charging the incoming particle from the flue gases, using a corona discharge; the collection efficiency is increased, especially for particles in the sub-micron size range.

Mercury Control:

The primordial goal of mercury control is to oxidize all metallic mercury content to ionic mercury that can filter out from flue gas desulphurization (FGD) systems. The foundation of the process is mainly the oxidation of mercury; the removal is then carried out from downstream equipment before it is emitted via the stack into the atmosphere. The primary technology includes the injection of activated carbon into the filtering mechanisms’ exhaust stream. Mercury can be sifted using the technique of chemical adsorption on powdered activated carbon (PAC). Activated carbon is introduced upstream of an ESP or FF and is cleared out along with fly ash.  The PAC system has a substantial drawback; it will harm ESP performance during the particulate collection. A new entrant to the market, the injection of amended silicates, possess the capacity to negate both the increased SO3 concentration in flue gas and reduce the undesirable effect on ESP performance. However, the long-term viability and economic efficiency of amended silicate have not yet been demonstrated. Another expansively used technology is the halogen injection into coal with calcium bromide or sodium iodide. The process is inexpensive and results in a very high mercury oxidation reaction. The only catch is that, because of the halogen addition to work productively as mercury control technology, retrofitting of an FGD system has to be in place. Oxidized mercury is highly soluble and can be cleared out from FGD systems with ease.

More in News

The oil and gas sector, a fundamental component of the global economy, is facing significant technological, environmental, and financial challenges. As the push for sustainability and decarbonization becomes increasingly prevalent, companies need to provide innovative solutions that satisfy global energy needs while maintaining competitiveness in the industry. The oil and gas sector faces a great challenge in promoting environmental sustainability because of its significant contribution to climate change, especially greenhouse gas emissions. The industry is urged to adopt cleaner technologies and shift energy production and consumption to reduce its carbon footprint. This includes investing in renewable energy, carbon capture and storage (CCS), and reducing emissions from extraction, transportation, and processing. The sector still faces a significant challenge in balancing energy production with environmental impact. The oil and gas industry is fast-paced, constantly developing new tools and techniques that improve efficiency, safety, and productivity. However, these rapid changes often bring new complications and risks. Introducing automation, artificial intelligence, and digital twins to current infrastructure is daunting. Moreover, cybersecurity issues pose a threat to safeguarding sensitive data while keeping critical infrastructure intact. Therefore, it requires long-term investment and vigilance. The oil and gas sector is highly challenged by fluctuating oil prices, which are influenced by geopolitical tensions, changes in global demand, and natural disasters. Companies must diversify their portfolios, invest in resilient infrastructure, and develop agile business models to adapt to this unpredictability. Such uncertainty requires financial and operational flexibility for survival and growth in the industry. The industry needs more labor in the current scenario due to the ever-increasing requirement for skilled workers who will manage advanced systems and technologies. Therefore, training programs for attracting and retaining talent in the industry have to be developed along with collaboration with educational institutions so that an adequately prepared workforce is provided for the future. Regulatory and political factors characterize much of the oil and gas services sector. Governments worldwide are starting to enforce stiffer environmental regulations, mainly carbon pricing and emissions cutbacks, compelling corporations to amend their plans and procedures. Political unrest in many regions also hampers investment and continuous operations. Balancing strict regulations with profit is a tightrope for most oil and gas service businesses. This oil and gas service industry stands at a critical juncture. The sector encounters many grand challenges, such as environmental concerns, technological integration, market volatility, workforce shortages, and regulatory hurdles, which present opportunities for innovation, collaboration, and long-term growth. As the world transitions towards a more sustainable energy future, the oil and gas services sector must adapt and change to remain indispensable in the global energy picture. ...Read more
Fremont, CA:  Energy consulting firms provide specialized guidance to help companies navigate the complexities of environmental laws and regulations. While their main objective is to enhance energy efficiency and lower costs, they also play a crucial role in helping businesses meet environmental compliance standards. With their in-depth knowledge of various regulatory frameworks, energy consultants help organizations develop strategies that align with these regulations and minimize their ecological impact. Energy consultants play a crucial role in helping businesses achieve environmental compliance by offering comprehensive services. Key areas of support include regulatory analysis, where consultants keep businesses informed of the latest environmental regulations, assess potential areas of non-compliance, and develop corrective strategies. They also conduct Environmental Impact Assessments (EIAs) for new projects or expansions, ensuring potential environmental effects are identified and mitigated. Businesses can reduce their energy consumption and carbon footprint with energy audits, another critical service. Consultants assist in calculating and reducing carbon emissions by implementing energy-efficient technologies and purchasing renewable energy credits. They are also instrumental in preparing sustainability reports, which accurately reflect a company's environmental practices and progress toward sustainability goals. Furthermore, energy consultants provide compliance training to ensure employees are well-versed in environmental regulations and best practices. Working with an energy consultant offers numerous benefits, including expert guidance on navigating complex environmental regulations and identifying energy-saving opportunities that can lead to significant cost savings. Moreover, energy consultants help mitigate risks associated with non-compliance, thereby avoiding costly fines and penalties. A commitment to environmental sustainability, supported by an energy consultant, can also enhance a business’s reputation, attract environmentally conscious customers, and provide a competitive edge in the marketplace. Selecting the right energy consultant requires careful consideration of several vital factors. Experience is paramount; a consultant with a proven track record in energy efficiency and environmental compliance is essential. Their expertise in energy audits, renewable energy, and regulatory compliance should also be thoroughly evaluated. Equally important is the consultant's approach, which should be collaborative and results-driven, allowing them to work closely with the client's team to develop tailored solutions. Obtaining references from previous clients is crucial to assess the consultant's capabilities and performance history. As environmental regulations evolve, businesses must proactively ensure compliance and safeguard their reputation. Energy consultants play a crucial role in guiding organizations through the complexities of environmental law and supporting their sustainability objectives. By leveraging the expertise of these consultants, businesses can fulfill their regulatory obligations and contribute to a more sustainable future. ...Read more
Breakthroughs in natural gas storage technologies are transforming the landscape of energy storage and distribution. New developments in underground, compressed, liquefied, and adsorption storage methods enhance both efficiency and sustainability in the natural gas sector. Underground natural gas storage remains the most widely used method for storing natural gas, involving gas injection into porous rock formations, salt caverns, or depleted oil and gas reservoirs. Although this method has been used for a long time, innovations have significantly improved its efficiency and safety. Integrating advanced monitoring systems allows for real-time data collection, helping detect potential leaks and optimize storage processes. Enhanced geological modeling and simulation techniques have also increased storage efficiency by improving the understanding of rock formations and gas flow, maximizing storage capacity, and extending the life of underground storage systems. Compressed natural gas involves storing natural gas at high pressures within specially designed containers. Recent breakthroughs in this field focus on the materials used to construct these storage tanks. Using lightweight, high-strength composite materials such as carbon fiber and fiberglass-reinforced composites has significantly improved storage capacity while reducing the weight of tanks. These innovations make CNG storage systems more efficient and cost-effective. Advances in pipeline technology and compression systems are enhancing the distribution of compressed natural gas, allowing for more efficient and widespread delivery to residential, commercial, and industrial users. Liquefied natural gas (LNG) storage involves cooling natural gas to very low temperatures to convert it into a liquid form, reducing its volume significantly. Innovations in LNG storage include improved cryogenic tank designs and materials that enhance the thermal efficiency of storage systems. Vacuum-insulated and double-walled tanks reduce heat transfer and minimize gas loss during storage. Floating LNG platforms have also emerged, allowing for offshore liquefaction, storage, and transportation of LNG, which reduces reliance on costly onshore infrastructure. In addition, small-scale LNG storage solutions are gaining popularity, offering cost-effective and flexible options for areas without access to large pipeline networks. Absorption storage is a newer method that utilizes porous materials, such as activated carbon or metal-organic frameworks (MOFs), to store natural gas at lower pressures and temperatures. MOFs have demonstrated significant potential due to their ability to store substantial amounts of gas compactly. Using these high-capacity adsorbents could lead to more efficient and cost-effective storage systems. ...Read more
Fremont, CA:  The Engineering Procurement and Construction (EPC) processes play a vital role in executing large-scale infrastructure and industrial projects, such as power plants, refineries, transportation systems, and water treatment facilities. Advanced software solutions like Building Information Modeling (BIM), enable stakeholders to create detailed 3D models that enhance planning, design refinement, and conflict resolution. Recently, several significant trends have surfaced in the EPC sector. Cloud-based project management platforms streamline communication among project teams, suppliers, and contractors, leading to improved coordination and faster decision-making. With climate change becoming a pressing concern, EPC projects now incorporate eco-friendly practices and renewable energy solutions. From integrating solar panels and wind turbines into infrastructure designs to implementing green building techniques and utilizing recycled materials, sustainability is increasingly becoming a core consideration in EPC projects.  Supply chain resilience has arisen as a critical trend in EPC. Many companies are now prioritizing local sourcing, establishing strategic partnerships with reliable vendors, and leveraging digital tools. The adoption of modular construction techniques allows for more significant prefabrication of components, reducing dependency on distant suppliers and mitigating supply chain disruptions. There is a growing trend towards integrated project delivery (IPD) and alternative contracting models. Predictive analytics help optimize resource allocation, improve project forecasting, and enhance project outcomes.  IPD encourages early collaboration among project stakeholders, including owners, architects, engineers, and contractors, fostering a more cohesive and transparent project delivery process. Alternative contracting models such as design-build and public-private partnerships (PPPs) offer greater flexibility, efficiency, and cost certainty than traditional procurement methods. The approaches incentivize innovation, shared risk, and value-driven outcomes, driving higher performance and client satisfaction. The EPC sector is witnessing increased adoption of modularization and offsite construction techniques. Modularization involves fabricating components or modules offsite in controlled factory environments before transporting them to the project site for assembly.  The approach offers numerous benefits, including accelerated project schedules, reduced labor costs, improved quality control, and enhanced safety. Offsite construction minimizes disruptions to local communities and reduces environmental impacts associated with traditional construction methods, making it an attractive option for complex and time-sensitive projects. The digital transformation of EPC projects has led to a greater emphasis on data analytics and predictive maintenance. By harnessing the power of big data, artificial intelligence, and machine learning, EPC firms can optimize asset performance, predict equipment failures, and schedule maintenance activities more effectively.  ...Read more